EUV Actinic Blank Inspection Tool Development

EUVL Symposium 2012

Kiwamu Takehisa ¹, Hiroki Miyai ¹, Tomohiro Suzuki ¹, Haruhiko Kusunose ¹, Takeshi Yamane ², Tsuneo Terasawa ², Hidehiro Watanabe ², Soichi Inoue ², Ichiro Mori ²

- ¹ Lasertec Corporation
- ² EUVL Infrastructure Development Center

Contents

- 1. Introduction
- 2. Illumination efficiency improvement
- 3. Solutions to use a new EUV filter
- 4. High magnification review optics
- 5. Summary

Contents

- 1. Introduction
- 2. Illumination efficiency improvement
- 3. Solutions to use a new EUV filter
- 4. High magnification review optics
- 5. Summary

ABI HVM Tool Development Schedule

EIDEC – Lasertec Blank Inspection Project

- -- Assembly of the ABI HVM tool has been completed.
- -- Adjustment and evaluation are in progress on schedule.

ABI HVM Tool

Actinic mask blank inspection sensitivity roadmap

- 1. Introduction
- 2. Illumination optics improvement
- 3. Solutions to use a new EUV filter
- 4. High magnification review optics
- 5. Summary

Illumination optics of the ABI tool

Illumination optics for the HVM tool

1. Previous design

2. HVM design

Two times higher transmission can be expected by improving the EUV filter and the vane trap

Anticipated problems using a new EUV filter

Previous design

HVM design

- 1. Introduction
- 2. Illumination optics improvement
- 3. Solutions to use a new EUV filter
- 4. High magnification review optics
- 5. Summary

Xe diffusion into the mirror chamber need to be suppressed

13.5nm radiation transmission in various gas

Xe diffusion into the mirror chamber can be stopped

Xe diffusion can be stopped in the vane trap by transparent gas

Out of band radiation does not affect sensitivity

Sensitivity test using a Si filter which greatly transmits visible light.

Almost equal sensitivity was obtained between Zr and Si.

- 1. Introduction
- 2. Illumination optics improvement
- 3. Solutions to use a new EUV filter
- 4. High magnification review optics
- 5. Summary

Purpose of the high magnification review optics

1200X magnification review mode: a basis for the accurate defect positioning

Review mode integration

High-Speed Inspection & High Resolution Review implemented in one system

Simulation results of the 1200X projection

Small aberration can be obtained at the center

Spot diagrams in the 0.47x0.47mm area for the 26X SO

An improved SO using an aspherical concave mirror is also being developed.

Review image degradation by the imperfection of SO

Deviation of the coaxiality of the convex and the concave mirror

- 1. Introduction
- 2. Illumination optics improvement
- 3. Solutions to use a new EUV filter
- 4. High magnification review optics
- 5. Summary

Summary

- 1. ABI HVM tool has a target of < 45min inspection time by improving the illumination optics as well as EUV source.
- 2. In order to increase the illumination optics efficiency, a new EUV filter and a new vane trap are employed.
- 3. Xe diffusion can be suppressed by transparent gas.
 Also it has been demonstrated that the OoB radiation does not affect the inspection sensitivity.
- 4. 1200X magnification review optics are design based on the 26X SO. Also an improved SO is being developed.

Acknowledgement

We would like to thank:

- -- all the members of the EIDEC BI program
- -- Prof. Kinoshita and Dr. Harada of Hyogo Univ.
- -- Dr. Toyoda of Tohoku Univ.

This work was supported by New Energy and Industrial Technology Development Organization (NEDO) and Japan Ministry of Economy, Trade and Industry (METI).